|
“碎片集”项目正在将数以万计的楔形文字数字化。图为一份天文学文本。(图片来源:科技日报) |
中评社北京1月14日电/据科技日报报导,从金融到医学,人工智能(AI)正深刻改变着现代生活。如今,它开始进军古代文本研究:从希腊与拉丁典籍到中国甲骨文,人工神经网络正成为解读古文字的钥匙。它不仅能驾驭浩瀚档案,填补字符空缺,还能解码几乎无迹可寻的罕见或灭绝语言,令古代智慧在现代科技之光下重现辉煌。
2023年10月,费德里卡·尼科拉尔迪收到了一封电子邮件,邮件附带的一张图片彻底改变了她的研究。此图显示了从公元79年维苏威火山浩劫中幸存的一卷莎草纸残骸,它于18世纪在赫库兰尼姆古城的一处豪华别墅遗迹中被发现。这些历经沧桑的莎草纸,曾是数百卷古籍之一,却因岁月侵蚀而变得脆弱不堪,多数已无法展开。
尼科拉尔迪是意大利那不勒斯大学的一名莎草纸学者,她曾参与一项利用AI读取难解文字的研究。而今,她见证了一项奇迹:图片上,一片莎草纸带上,希腊字母密布如织,于幽暗中焕发新生。
这一名为“维苏威挑战”的项目只是AI重塑古代历史研究的“冰山一角”。
神经网络重建古代文本
几十年来,计算机一直被用于对数字化文本进行分类和分析,但目前最令人兴奋的是神经网络的使用。神经网络由相互连接的节点组成的分层结构组成,尤其是具有多个内部层的“深层”神经网络。
卷积神经网络(CNN)模型能够从这些图像中精准捕捉网格状数据结构。CNN模型在光学字符识别领域大放异彩的同时,也开辟了其他多元化的应用途径。例如,中国研究团队在探索甲骨文时,巧妙地运用这些模型来复原遭受严重侵蚀的文字图案,深入分析甲骨文随时间的演变轨迹,并将破碎的文物碎片重新拼凑起来,重现历史原貌。
与此同时,循环神经网络(RNN)作为一种专为处理线性序列数据设计的模型,开始展现出在搜索、翻译以及填补已转录古代文本缺失内容方面的巨大潜力。RNN已被用于为古巴比伦时期数百份格式严谨的行政和法律文本提供缺失字符的智能化建议。 |